M1. (a) mark out (equal) distances along height being raised (1) measure time taken to travel each of these distances (1) times should be equal (1)
[or use a position sensor attached to a data logger measure distance or speeds at regular intervals increase in distance or speeds should be constant]
(b) find work done by motor from gain in potential energy of metal block (1) divide work done by time to find power (1)
measurements: mass of block, height block has risen and time taken (1)
[or power = Fv
force is weight of block
velocity is velocity of block
same measurements as above]
$\max 2$

M2.
(a) (i) area $=120 \times 10^{6}\left(\mathrm{~m}^{2}\right)$ (1)

$$
\begin{equation*}
\text { mass }=120 \times 10^{6} \times 10 \times 1100=1.3 \times 10^{12} \mathrm{~kg}(1) \tag{1}
\end{equation*}
$$

(ii) (use of $E_{\mathrm{p}}=m g h$ gives) $\Delta E_{\mathrm{p}}=1.3 \times 10^{12} \times 9.8 \times 5=6.4 \times 10^{13} \mathrm{~J}$
(allow C.E. for incorrect value of mass from (i))
(iii) power (from sea water) $=\frac{6.4 \times 10^{13}}{6 \times 3600}$
[or correct use of $P=F v$]
= 3000 (MW) (1)
(allow C.E. for incorrect value of ΔE_{p} from (ii))
power output $=3000 \times 0.4$ (1)
= 120 MW (1)
(allow C.E. for incorrect value of power)

M3. (a) (i) (gravitational) potential energy to kinetic energy (1)
(ii) kinetic energy to heat energy [or work done against friction] (1)
(b) e.g. when using light gates
place piece of card on trolley of measured length (1)
card obscures light gate just before trolley strikes block (1)
calculate speed from length of card/time obscured (1)
alternative 1: measured horizontal distance (1)
speed $=$ distance/time (1)
time (1)
alternative 2: measure h (1)
equate potential and kinetic energy (1)
$v^{2}=g h(1)$
alternative 3: data logger + sensor (1)
how data processed (1)
how speed found (1)
(c) vary starting height of trolley
[or change angle] (1)
the greater the height the greater the speed of impact (1)
[or alter friction of surface (1)
greater friction, lower speed] (1)
(a) (i) (use of $E_{\mathrm{p}}=m g h$ gives) $E_{\mathrm{p}}=70 \times 9.81 \times 150$ (1) $=1.0(3) \times 10^{5} \mathrm{~J}(1)$
(ii) (use of $E_{\mathrm{k}}=1 / 2 m v^{2}$ gives) $E_{\mathrm{k}}=1 / 2 \times 70 \times 45^{2}(1)$ $=7.1 \times 10^{4} \mathrm{~J}(1) \quad\left(7.09 \times 10^{4} \mathrm{~J}\right)$
(b) (i) work done $\left(=1.03 \times 10^{5}-7.09 \times 10^{4}\right)=3.2(1) \times 10^{4} \mathrm{~J}$ (1) (allow C.E. for values of E_{p} and E_{k} from (a)
(ii) (use of work done $=$ Fs gives)
$3.21 \times 10^{4}=F \times 150$ (1)
(allow C.E. for value of work done from (i)
$F=210 \mathrm{~N}$ (1) (213 N)

M5. (a) GPE to $K E$ to $G P E \checkmark$
no energy lost (from system) / no work done against resistive forces \checkmark
initial $G P E=$ final $(G P E) /$ initial $(G P E)=$ final GPE
OR $h=G P E / m g$ and these are all constant so h is the same \checkmark
(b) Initial curve with decreasing gradient and reaching constant maximum speed before X and maintaining constant speed up to X

B labelled in correct place \checkmark
B labelled in correct place AND constant speed maintained for remainder of candidates graph and line is straight \checkmark

(c) (first law) ball travels in a straight line at a constant speed / constant velocity / (maintains) uniform / no change in motion / zero acceleration \checkmark
there is no (external) unbalanced / resultant force acting on it \checkmark

M6. (a) (i) $(m=\rho V)=1.2 \times 3.5 \times 10^{5}$ must be seen (1)

$$
4.2 \times 10^{5}(\mathrm{~kg}) \text { seen (1) }
$$

(ii) $\quad\left(E_{k}=\frac{1}{2} m v^{2}\right)=\frac{1}{2} \times 4.2 \times 10^{5} \times 11^{2}(1)$
(iii) $\frac{10 \times 10^{6}}{2.54 \times 10^{7}}$ (1) allow ecf from (a) (ii)

39 to 41.6 (\%) (1) allow ecf from (a) (ii) unless percentage is greater than 100
(b) advantages, any one:
wind has: no fuel cost/causes no air pollution/no CO_{2} is renewable (1)
disadvantages, any one from:
wind: varies/is intermittent/unreliable/causes visual pollution/noise/ danger to birds/has a high capital cost/high 'start up' cost/requires changes to National Grid need (1) allow 'unpredictable'

2

M7. (a) (i) $(s=1 / 2(u+v) t) t=2 s / v \checkmark$ (correct rearrangement, either symbols or values)
$(=100 / 6.7)=15 \checkmark(\mathrm{~s})(14.925)$
or alternative correct approach
2
(ii) $\left(K E=1 / 2 m v^{2}=1 / 2 \times 83 \times 6.7^{2}\right)=1900 \checkmark(1862.9 \mathrm{~J})$

2 sf
(iii) \quad GPE $=83 \times 9.81 \times 3.0 \checkmark$ penalise use of 10 , allow 9.8
$=2400(2443 \mathrm{~J}) \checkmark$ do not allow $2500(2490)$ for use of $g=10$
(b) (i) $5300+3700$ (or 9000 seen)

$$
\begin{aligned}
& \text { or }-2443-1863 \text { (or (-) } 4306 \text { seen) } \\
& =4700(\mathrm{~J}) \checkmark(4694) \quad \text { ecf from parts aii \& aiii }
\end{aligned}
$$

(ii) mention of friction and appropriate location given mention of air resistance (or drag)
do not allow energy losses or friction within the motor
do not allow energy losses from the cyclist
must give a cause not just eg 'heat loss in tyres'
(b) masses of trolley and falling mass (1)
distance mass falls (or trolley moves) and time taken to fall (or speed) (1)
(c) calculate loss of gravitational pot. energy of falling mass (mgh) (1)
calculate speed of trolley (as mass hits floor),
with details of speed calculation (1)
calculate kinetic energy of trolley (1)
and mass (1)
compare (loss of) potential energy with (gain of) kinetic energy (1)
Max 4
[10]

M9. (a) weight/gravity causes raindrop to accelerate/move faster (initially) (1)
resistive forces/friction increase(s) with speed (1)
resistive force (eventually) equals weight (1)
[or upward forces equal downward forces]
resultant force is now zero (1)
[or forces balance or in equilibrium]
no more acceleration (1)
[or correct application of Newton's Laws]
[if Newton's third law used, then may only score first two marks]
(b) (i) $E_{k}\left(=1 / 2 m v^{2}\right)=1 / 2 \times 7.2 \times 10^{-9} \times 1.8^{2}$ (1)

$$
=1.2 \times 10^{-8} \mathrm{~J}(1)\left(1.17 \times 10^{-8} \mathrm{~J}\right)
$$

(ii) work done $(=m g h)=7.2 \times 10^{-9} \times 9.81 \times 4.5(1)$

$$
=3.2 \times 10^{-7} \mathrm{~J}(1)\left(3.18 \times 10^{-7} \mathrm{~J}\right)
$$

(c) $\quad v_{\text {resulant }}=\sqrt{ }\left(1.8^{2}+1.4^{2}\right)(1)$
$=2.2(8) \mathrm{m} \mathrm{s}^{-1}(1)$
$\theta=\tan ^{-1}(1.4 / 1.8)=38^{\circ}(1)\left(37.9^{\circ}\right)$
[or correct scale diagram]

M10. (a) (i) $\left(E_{\mathrm{K}}=1 / 2 m v^{2}=\right) 0.5 \times 68 \times 16^{2}(1)=8700$ or $8704(\mathrm{~J})$ (1)
(ii) $\quad\left(\Delta E_{\mathrm{p}}=m g \Delta h=\right) 68 \times 9.8(1) \times 12(1)=8000$ or $8005(\mathrm{~J})(1)$
(iii) any three from
gain of kinetic energy > loss of potential energy (1)
(because) cyclist does work (1)
energy is wasted (on the cyclist and cycle) due to air resistance or friction or transferred to thermal/heat (1)
$\mathrm{KE}=\mathrm{GPE}+\mathrm{W}-$ energy 'loss' (1) (owtte)
energy wasted $(=8000+2400-8700)=1700(\mathrm{~J})(1)$
(b) (i) $\quad\left(u=16 \mathrm{~m} \mathrm{~s}^{-1}, s=160 \mathrm{~m}, v=0\right.$, rearranging $s=1 / 2(u+v) t$ gives $)$
$160=1 / 2 \times 16 \times \mathrm{t}$ or $t=\frac{2 s}{(u+v)}$ or correct alternative
$\frac{2 \times 160}{16}($ gets 2 marks $)(1)=20 \mathrm{~s}(1)$
(ii) acceleration $a=\left(\frac{v-u}{t}=\right) \frac{0-16}{20}$ ecf (b) (i) (1) $=(-) 0.80\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
resultant force $F=m a=68 \times(-) 0.80(1)=(-) 54(N)(1)$ or 54.4 or (work done by horizontal force $=$ loss of kinetic energy work done $=$ force \times distance gives)
force $=\frac{\text { (loss of kinetic)energy }}{\text { distance }}$ (1) $=\frac{8700 \mathrm{~J}}{160 \mathrm{~m}}$
ecf (a) (i) (1) = $54(N)(1)$

M11.

(a) (i) $\quad\left(\alpha=\frac{v-u}{t}\right)=\frac{58}{3.5} \vee^{\prime}=17\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \imath^{\prime}$
(ii) $\quad(F=m a)=5800 \times 16.57$ ecf (a)(i)
$=96000{ }^{\sim}$
allow 98600 or 99000 for use of 17
$N \mathbf{V}$
(iii) $\quad\left(s=\frac{1}{2}(u+v) t\right)=\frac{1}{2} \times 58 \times 3.5 v$
$=100(101.50,102$, accept 101 m$)$
or use of $v^{2}=u^{2}+2$ as $(=101 \mathrm{~m} .98 .9$ for use of 17) 2
or $s=u t+\frac{1}{2} a t^{2}(=101.7$, use of 17 gives 104) (ecf from (a)(i))
(iv) $\quad(W=F s)(\mathrm{a})($ (ii $) \times(\mathrm{a})\left(\right.$ (iii) or use of $\frac{1}{2} m v^{2} \boldsymbol{v}^{\prime}(=13.6$ to 14.7)

$$
\begin{aligned}
& \left(P=\frac{F s}{t}\right)=\frac{96106 \times 101.5}{3.5} \checkmark^{\prime}=2.8 \mathrm{M}(\mathrm{~W}) \text { ecf }(\mathrm{a})(\mathrm{ii}),(\mathrm{a})(\mathrm{iii}) \\
& \text { or use of } P=\frac{F v}{2} \text { their answer } \times 5 \checkmark^{\prime}=14,000,000=14 \mathrm{M}(\mathrm{~W})
\end{aligned}
$$

(b) $\frac{1}{2}(m) v^{2}=(m) g(\Delta) h$ or (loss of) $\mathrm{KE}=$ (gain in) PE v^{\prime}
allow their work done from (iv) used as KE

$$
\begin{aligned}
& h=\frac{1}{2} \frac{v^{2}}{g} \text { or } h=\frac{1}{2} \times \frac{58^{2}}{9.81} \\
& \quad \text { accept use of kinematics equation } \\
& =170
\end{aligned}
$$

