M2.

M1. (a) mark out (equal) distances along height being raised (1) measure time taken to travel each of these distances (1) times should be equal (1) [or use a position sensor attached to a data logger measure distance or speeds at regular intervals increase in distance or speeds should be constant]

max 2

(b) find work done by motor from gain in potential energy of metal block (1) divide work done by time to find power (1) measurements: mass of block, height block has risen and time taken (1) [or power = *Fv* force is weight of block velocity is velocity of block same measurements as above]

- (a) (i) area = 120×10^6 (m²) (1) mass = $120 \times 10^6 \times 10 \times 1100 = 1.3 \times 10^{12}$ kg (1)
 - (ii) (use of $E_p = mgh$ gives) $\Delta E_p = 1.3 \times 10^{12} \times 9.8 \times 5 = 6.4 \times 10^{13}$ J (1) (allow C.E. for incorrect value of mass from (i))
 - (iii) power (from sea water) = $\frac{6.4 \times 10^{13}}{6 \times 3600}$ [or correct use of P = Fv] = 3000 (MW) (1) (allow C.E. for incorrect value of ΔE_p from (ii)) power output = 3000 × 0.4 (1) = 120 MW (1) (allow C.E. for incorrect value of power)

[7]

[4]

- M3. (a) (i) (gravitational) potential energy to kinetic energy (1)
 - (ii) kinetic energy to heat energy [or work done against friction] (1)

2

max 2

 (b) e.g. when using light gates place piece of card on trolley of measured length (1) card obscures light gate just before trolley strikes block (1) calculate speed from length of card/time obscured (1)

```
alternative 1: measured <u>horizontal distance</u> (1)
speed = distance/time (1)
time (1)
```

alternative 2: measure h (1) equate potential and kinetic energy (1)

alternative 3: data logger + sensor (1) how data processed (1) how speed found (1)

(c) vary starting height of trolley
 [or change angle] (1)
 the greater the height the greater the speed of impact (1)

[or alter friction of surface (1) greater friction, lower speed] (1)

[7]

3 QWC 2

2

4

- M4. (a) (i) (use of $E_p = mgh$ gives) $E_p = 70 \times 9.81 \times 150$ (1) = 1.0(3) × 10⁵ J (1)
 - (ii) (use of $E_{k} = \frac{1}{2}mv^{2}$ gives) $E_{k} = \frac{1}{2} \times 70 \times 45^{2}$ (1) = 7.1 × 10⁴ J (1) (7.09 × 10⁴ J)
 - (b) (i) work done (= $1.03 \times 10^5 7.09 \times 10^4$) = $3.2(1) \times 10^4$ J (1) (allow C.E. for values of E_{p} and E_{k} from (a)
 - (ii) (use of work done = Fs gives) $3.21 \times 10^4 = F \times 150$ (1) (allow C.E. for value of work done from (i) F = 210 N (1) (213 N)

M5. (a) GPE to KE to $GPE \checkmark$

no energy lost (from system) / no work done against resistive forces 🗸

initial GPE = final (GPE) / initial (GPE) = final GPE

OR h = GPE / mg and these are all constant so h is the same \checkmark

(b) Initial curve with decreasing gradient and reaching constant maximum speed before X and maintaining constant speed up to X \checkmark

B labelled in correct place ✓

B labelled in correct place AND constant speed maintained for remainder of candidates graph and line is straight \checkmark

(c) (first law) ball travels in a <u>straight line</u> at a constant speed / constant <u>velocity</u> / (maintains) <u>uniform</u> / <u>no change in</u> motion / zero acceleration √

there is no (external) **unbalanced / resultant** force acting on it \checkmark

[8]

M6. (a) (i) $(m = \rho V) = 1.2 \times 3.5 \times 10^5$ must be seen (1)

4.2 × 10⁵ (kg) seen (1)

(ii)
$$(E_{k} = \frac{1}{2} mv^{2}) = \frac{1}{2} \times 4.2 \times 10^{5} \times 11^{2}$$
 (1)
2.5 or 2.4 × 10⁷ (J) (1) (25.4 or 24.2 MJ)

3

3

2

2

(iii) $\frac{10 \times 10^{6}}{2.54 \times 10^{7}}$ (1) allow ecf from (a) (ii) 39 to 41.6 (%) (1) allow ecf from (a) (ii) unless percentage is greater than 100

(b) advantages, any one:

wind has: no fuel cost/causes no air pollution/no CO₂/is renewable (1)

disadvantages, any one from:

wind: varies/is intermittent/unreliable/causes visual pollution/noise/ danger to birds/has a high capital cost/high 'start up' cost/requires changes to National Grid need **(1)** allow 'unpredictable'

[8]

2

M7.	(a)	(i) $(s = \frac{1}{2}(u + v) t) t = \frac{2s}{v} \sqrt{(correct rearrangement, either symbols or value)}$	ues)
			(= 100/6.7) = 15 ✓ (s) (14.925)	
			or alternative correct approach	2
		(ii)	$(KE = 1/2mv^2 = \frac{1}{2} \times 83 \times 6.7^2) = 1900 \checkmark (1862.9 \text{ J})$	
			2 sf √	2
		(iii)	GPE = 83 × 9.81 × 3.0 ✓ penalise use of 10, allow 9.8	
			= 2400 (2443 J) \checkmark do not allow 2500 (2490) for use of g = 10	2
	(b)	(i)	5300 + 3700 (or 9000 seen)	
			or – 2443 – 1863 (or (−) 4306 seen) 🗸	
			= 4700 (J) ✓ (4694) ecf from parts aii & aiii	2

	Phy	vsicsA	ndMathsTutor.com		2
		(ii)	mention of friction and appropriate location given \checkmark		
			mention of air resistance (or drag) \checkmark		
			do not allow energy losses or friction within the motor		
			do not allow energy losses from the cyclist		
			must give a cause not just eg 'heat loss in tyres'		
				2	[10]
M8.		(a)	(i) (gravitational) potential energy (1)to kinetic energy (1)		
		(ii)	both trolley and mass have kinetic energy (1) mention of thermal energy (due to friction) (1)	4	
	(b)	ma	sses of trolley and falling mass (1)		
			ance mass falls (or trolley moves) and time taken to		
		fall	(or speed) (1)	2	
	(c)	cal	culate loss of gravitational pot. energy of falling mass (mgh) (1)		
		calculate speed of trolley (as mass hits floor),			
		wit	n details of speed calculation (1)		
		cal	culate kinetic energy of trolley (1)		
		and	l mass (1)		
		compare (loss of) potential energy with (gain of) kinetic energy (1)		Max 4	[40]

[10]

21

M9. (a) weight/gravity causes raindrop to accelerate/move faster (initially) (1) resistive forces/friction increase(s) with speed (1) resistive force (eventually) equals weight (1) [or upward forces equal downward forces] resultant force is now zero (1) [or forces balance or in equilibrium] no more acceleration (1) [or correct application of Newton's Laws] [if Newton's third law used, then may only score first two marks]

- (b) (i) $E_{k} (= \frac{1}{2}mv^{2}) = \frac{1}{2} \times 7.2 \times 10^{-9} \times 1.8^{2}$ (1) = 1.2 × 10⁻⁸ J (1) (1.17 × 10⁻⁸ J)
 - (ii) work done (= mgh) = 7.2 × 10⁻⁹ × 9.81 × 4.5 (1)

$$= 3.2 \times 10^{-7} \text{ J}$$
 (1) $(3.18 \times 10^{-7} \text{ J})$

(c)
$$v_{\text{resultant}} = \sqrt{(1.8^2 + 1.4^2)}$$
 (1)
= 2.2(8) m s⁻¹ (1)
 $\theta = \tan^{-1} (1.4/1.8) = 38^\circ$ (1) (37.9°)
[or correct scale diagram]

[11]

4

3

M10. (a) (i)
$$(E_{\rm k} = \frac{1}{2} mv^2 =) 0.5 \times 68 \times 16^2$$
 (1) = 8700 or 8704(J) (1)

(ii)
$$(\Delta E_{p} = mg\Delta h =) 68 \times 9.8(1) \times 12$$
 (1) = 8000 or 8005 (J) (1)

(iii) any **three** from

gain of kinetic energy > loss of potential energy (1)

(because) cyclist does work (1)

energy is wasted (on the cyclist and cycle) due to air resistance or friction or transferred to thermal/heat (1)

KE = GPE + W – energy 'loss' (1) (owtte)

energy wasted (= 8000 + 2400 - 8700) = 1700(J) (1)

(b) (i) $(u = 16 \text{ m s}^{-1}, s = 160 \text{ m}, v = 0, \text{ rearranging } s = \frac{1}{2} (u + v) t \text{ gives})$

160 =
$$\frac{1}{2} \times 16 \times t$$
 or $t = \frac{2s}{(u + v)}$ or correct alternative

$$\frac{2 \times 160}{16}$$
 (gets 2 marks) (1) = 20s (1)

(ii) acceleration
$$a = \left(\frac{\nu - u}{t}\right) = \left(\frac{0 - 16}{20}\right) \exp(b)$$
 (i) (1) = (-) 0.80 (m s⁻²)
resultant force $F = ma = 68 \times (-) 0.80$ (1) = (-) 54 (N) (1) or 54.4
or (work done by horizontal force = loss of kinetic energy
work done = force × distance gives)

force =
$$\frac{(\text{loss of kinetic})\text{energy}}{\text{distance}}$$
 (1) = $\frac{8700 \text{ J}}{160 \text{ m}}$
ecf (a) (i) (1) = 54 (N) (1)

M11.	(a)	(i) $(\alpha = \frac{\nu - u}{t}) = \frac{58}{3.5} \checkmark = 17 \text{ (m s}^{-2}) \checkmark$	2
	(ii)	(<i>F</i> = ma) = 5800 × 16.57 ecf (a)(i) √	
		= 96000 v	
		allow 98600 or 99000 for use of 17	
		N✓	3
			3
	(iii)	$(s = \frac{1}{2}(u + v)t) = \frac{1}{2} \times 58 \times 3.5 \checkmark$	
		= 100 (101.50, 102, accept 101 m) 🗸	
		or use of $v^2 = u^2 + 2as$ (= 101 m. 98.9 for use of 17) 2	
		or $s = ut + \frac{1}{2}at^2$ (= 101.7, use of 17 gives 104) (ecf from (a)(i))	2

[13]

(iv)
$$(W = Fs)$$
 (a)(ii) × (a)(iii) or use of $\frac{1}{2} mv^2 \sqrt{1}$ (= 13.6 to 14.7)

$$\left(P = \frac{Fs}{t}\right) = \frac{96106 \times 101.5}{3.5} \checkmark = 2.8 \text{M (W) ecf (a)(ii), (a)(iii)}$$

or use of $P = \frac{Fv}{2}$ their answer $\times 5 \checkmark = 14,000,000 = 14 \text{ M (W)}$

(b)
$$\frac{1}{2}(m) v^2 = (m) g(\Delta) h \text{ or } (\text{loss of}) \text{ KE} = (\text{gain in}) \text{ PE } \mathbf{v}^*$$

allow their work done from (iv) used as KE

$$h = \frac{1}{2} \frac{v^2}{g}$$
 or $h = \frac{1}{2} \times \frac{58^2}{9.81}$ \checkmark

accept use of kinematics equation

= 170 🗸

[13]

3